165 research outputs found

    Decentralized Multi-Subgroup Formation Control With Connectivity Preservation and Collision Avoidance

    Get PDF
    This paper proposes a formation control algorithm to create separated multiple formations for an undirected networked multi-agent system while preserving the network connectivity and avoiding collision among agents. Through the modified multi-consensus technique, the proposed algorithm can simultaneously divide a group of multiple agents into any arbitrary number of desired formations in a decentralized manner. Furthermore, the agents assigned to each formation group can be easily reallocated to other formation groups without network topological constraints as long as the entire network is initially connected; an operator can freely partition agents even if there is no spanning tree within each subgroup. Besides, the system can avoid collision without loosing the connectivity even during the transient period of formation by applying the existing potential function based on the network connectivity estimation. If the estimation is correct, the potential function not only guarantees the connectivity maintenance but also allows some extra edges to be broken if the network remains connected. Numerical simulations are performed to verify the feasibility and performance of the proposed multi-subgroup formation control

    Vision-Based Obstacle Avoidance Strategies for MAVs Using Optical Flows in 3-D Textured Environments

    Get PDF
    Due to payload restrictions for micro aerial vehicles (MAVs), vision-based approaches have been widely studied with their light weight characteristics and cost effectiveness. In particular, optical flow-based obstacle avoidance has proven to be one of the most efficient methods in terms of obstacle avoidance capabilities and computational load; however, existing approaches do not consider 3-D complex environments. In addition, most approaches are unable to deal with situations where there are wall-like frontal obstacles. Although some algorithms consider wall-like frontal obstacles, they cause a jitter or unnecessary motion. To address these limitations, this paper proposes a vision-based obstacle avoidance algorithm for MAVs using the optical flow in 3-D textured environments. The image obtained from a monocular camera is first split into two horizontal and vertical half planes. The desired heading direction and climb rate are then determined by comparing the sum of optical flows between half planes horizontally and vertically, respectively, for obstacle avoidance in 3-D environments. Besides, the proposed approach is capable of avoiding wall-like frontal obstacles by considering the divergence of the optical flow at the focus of expansion and navigating to the goal position using a sigmoid weighting function. The performance of the proposed algorithm was validated through numerical simulations and indoor flight experiments in various situations

    Heterogeneous mission planning for a single unmanned aerial vehicle (UAV) with attention-based deep reinforcement learning

    Get PDF
    Large-scale and complex mission environments require unmanned aerial vehicles (UAVs) to deal with various types of missions while considering their operational and dynamic constraints. This article proposes a deep learning-based heterogeneous mission planning algorithm for a single UAV. We first formulate a heterogeneous mission planning problem as a vehicle routing problem (VRP). Then, we solve this by using an attention-based deep reinforcement learning approach. Attention-based neural networks are utilized as they have powerful computational efficiency in processing the sequence data for the VRP. For the input to the attention-based neural networks, the unified feature representation on heterogeneous missions is introduced, which encodes different types of missions into the same-sized vectors. In addition, a masking strategy is introduced to be able to consider the resource constraint (e.g., flight time) of the UAV. Simulation results show that the proposed approach has significantly faster computation time than that of other baseline algorithms while maintaining a relatively good performance

    New multiple target tracking strategy using domain knowledge and optimisation

    Get PDF
    This paper proposes an environment-dependent vehicle dynamic modeling approach considering interactions between the noisy control input of a dynamic model and the environment in order to make best use of domain knowledge. Based on this modeling, a new domain knowledge-aided moving horizon estimation (DMHE) method is proposed for ground moving target tracking. The proposed method incorporates different types of domain knowledge in the estimation process considering both environmental physical constraints and interaction behaviors between targets and the environment. Furthermore, in order to deal with a data association ambiguity problem of multiple-target tracking in a cluttered environment, the DMHE is combined with a multiple-hypothesis tracking structure. Numerical simulation results show that the proposed DMHE-based method and its extension could achieve better performance than traditional tracking methods which utilize no domain knowledge or simple physical constraint information only

    Adaptive Bayesian sensor motion planning for hazardous source term reconstruction

    Get PDF
    There has been a strong interest in emergency planning in response to an attack or accidental release of harmful chemical, biological, radiological or nuclear substances. Under such circumstances, it is of paramount importance to determine the location and release rate of the hazardous source to forecast the future harm it may cause and employ methods to minimize the disturbance. In this paper, a sensor data collection strategy is proposed whereby an autonomous mobile sensor is guided to address such a problem with a high degree of accuracy and in a short amount of time. First, the parameters of the release source are estimated using the Markov chain Monte Carlo sampling approach. The most informative manoeuvre from the set of possible choices is then selected using the concept of maximum entropy sampling. Numerical simulations demonstrate the superior performance of the proposed algorithm compared to traditional approaches in terms of estimation accuracy and the number of measurements required

    A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors

    Get PDF
    Understanding atmospheric transport and dispersal events has an important role in a range of scenarios. Of particular importance is aiding in emergency response after an intentional or accidental chemical, biological or radiological (CBR) release. In the event of a CBR release, it is desirable to know the current and future spatial extent of the contaminant as well as its location in order to aid decision makers in emergency response. Many dispersion phenomena may be opaque or clear, thus monitoring them using visual methods will be difficult or impossible. In these scenarios, relevant concentration sensors are required to detect the substance where they can form a static network on the ground or be placed upon mobile platforms. This paper presents a review of techniques used to gain information about atmospheric dispersion events using static or mobile sensors. The review is concluded with a discussion on the current limitations of the state of the art and recommendations for future research

    Multiple model ballistic missile tracking with state-dependent transitions and Gaussian particle filtering

    Get PDF
    This paper proposes a new method for tracking the entire trajectory of a ballistic missile from launch to impact on the ground. Multiple state models are used to represent the different ballistic missile dynamics in three flight phases: boost, coast and reentry. In particular, the transition probabilities between state models are represented in a state-dependent way by utilising domain knowledge. Based on this modelling system and radar measurements, a state-dependent interacting multiple model approach based on Gaussian particle filtering is developed to accurately estimate information describing the ballistic missile such as the phase of flight, position, velocity and relevant missile parameters. Comprehensive numerical simulation studies show that the proposed method outperforms the traditional multiple model approaches for ballistic missile tracking

    Adaptive Second-Order Sliding Mode Algorithm-Based Modified Function Projective Synchronization of Uncertain Hyperchaotic Systems

    Get PDF
    This article proposes a synchronization technique for uncertain hyperchaotic systems in the modified function projective manner using integral fast terminal sliding mode (I-FTSM) and adaptive second-order sliding mode algorithm. The new I-FTSM manifolds are introduced with the aim of having the fast convergence speed. The proposed continuous controller not only results in the robustness and high-accuracy synchronization in the presence of unknown external disturbances and/or model uncertainties but also helps alleviating the chattering effect significantly. Numerical simulation results are provided to illustrate the effectiveness of the proposed control design technique and verify the theoretical analysis

    New environmental dependent modelling with Gaussian particle filtering based implementation for ground vehicle tracking

    Get PDF
    This paper proposes a new domain knowledge aided Gaussian particle filtering based approach for the ground vehicle tracking application. Firstly, a new form of modelling is proposed to reflect the influences of different types of environmental domain knowledge on the vehicle dynamic: i) a non-Markov jump model is applied with multiple models while transition probabilities between models are environmental dependent ii) for a particular model, both the constraints and potential forces obtained from the surrounding environment have been applied to refine the vehicle state distribution. Based on the proposed modelling approach, a Gaussian particle filtering based method is developed to implement the related Bayesian inference for the target state estimation. Simulation studies from multiple Monte Carlo simulations confirm the advantages of the proposed method over traditional ones, from both the modelling and implementation aspects

    Coordinated Standoff Tracking of Moving Target Groups Using Multiple UAVs

    Get PDF
    This paper presents a methodology for coordinated standoff tracking of moving target groups using multiple unmanned aerial vehicles (UAVs). The vector field guidance approach for a single UAV is first applied to track a group of targets by defining a variable standoff orbit to be followed, which can keep all targets within the field-of-view of the UAV. A new feedforward term is included in the guidance command considering variable standoff distance, and the convergence of the vector field to the standoff orbit is analyzed and enhanced by adjusting radial velocity using two active measures associated with vector field generation. Moreover, for multiple group tracking by multiple UAVs, a two-phase approach is proposed as a suboptimal solution for a Non-deterministic Polynomial-time hard (NP-hard) problem, consisting of target clustering/assignment and cooperative standoff group tracking with online local replanning. Lastly, localization sensitivity to the group of targets is investigated for different angular separations between UAVs and sensing configurations. Numerical simulations are performed using randomly moving ground vehicles with multiple UAVs to verify the feasibility and benefit of the proposed approach.clos
    • โ€ฆ
    corecore